IV, Preliminary Inveétigatioa

In this scctiom, certain resulis will be préseﬂééd, wiaich have
been obteined in the preliminary iﬁvastigatidﬁ"alféady undeirtaken. The
pvroofs of the new theorems will be‘leﬁt'for'tﬁe Appendis,

The point of departure is o theovem due to Jackson [20] which
bag alrcady been referved to, Je congiders a_satuatlon_xn which there

_ th < . e
are M depariments, the m = departmeut taving the following properties
(=1, 2, ,.., M 3 ' '

1, t& servers
2. Custeners frenm cutside aia:v"sﬁen arrive in a Poisson-type
time series at mean rate \ (adu"tzo 1l castome:s will avviva
frenm other deparsments in tne system) .,
3. Sewvice is on a first come, ﬁirst-setva&'basis, with an
infinize storage available for ova“‘IGU' the sprvicing time

| being uanncntiall; dz&trlbuted with mean lfu o
4. Once served, a customer woes immediately Ezom departme1L |
o] dephrttent It with p"ebabi?ify g ; hig total cervice is com-
pleted {and h? then leaves the ayst@m) with probability

Praperey 4 is the basis on which chksaﬂ calTs ahis syetam & necuork of

vaiting linzs. Defining l m_as-&ae_average-arrxvai-raae of customers

at depavtment o frem 2il souvces, inside and outsids the system, Jackson
states chat . - - |
R »»*-E ' ["

o n 4o Fono dn

3

How, defining o ao zhe number of c"ﬂtcmarb vaxtinw angd in gavvice at

g

]

depantment m, and defining the state of the system,as the vaetor

{nla Tyy ssop nMQ, ae proves the follpwing

(1
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Tm: Defi'ﬁe ?n(m) (m L 19 2# aeop Hp nﬂ 0* lp 23 uab}g the
Pr [finding n customers in department m in the steady state], by the
foilowing equations (where the Po{ma are determined by the conditions

n

Po(m) ( _rmfnml.lm)n H':/n: (a - -0, 19 seoy Nm)

() | | |
2 e g | - (2)

p & ¢ me“myn“‘.xn:  aaw

0 ' m mm m m _ ©Tm

A scegdy étate dig;ribution of the state of_the.ahcve described systen

is given ﬁ:’gﬁéggéﬁéucts
P..(ﬂlp.ﬁz.n. oo oy nMD - _?nl(l.}Pnztz)ooaPan) (33

provided rm (-p.mblm form=® 1, 2, ,00, ¥

This theorem says, in essence, that at least go far as steady
states are concerned, the gystem with vhich we are concernaed behaves as
if ite departments were independent elemantéry syétems of the following
type (which is the type considered by Erlang)s Customers arrive in a
Poisson type time series at mean rate'x; ‘They are handled on a first
come, firgt serve basis by a system of N identical gervers, the servicing
times being exponentially distributed with mean'iigo -Tﬁe steady state
distzibutiﬁn of the number of people, n, waiting and in sérvice has been
obtained by Erlang, and is the jdenticai form as in.JackSon's theorem
above, with Nm =N, f; = A, By ™ Ho Pn(m) &_?n, and with the condition
A & ul. That is, Jackson's problem reduces to thaet of Erlang's when
M e 3}, However, for M = 1, the network property of the system is des-
troyed, Jackson's result is very neat, and suggests the possibility of
bz2ing able to handle large nets of the type of interest ko this thesis,

' Fpllowing, i8 @ statement and discussion of some reénits obtained

for systems similar to those considered by Erlang and Jacitson; proois
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for the theoreus ave given in fhe Lppendix,

Cousider & peiv of modes in a Jurge communication net, Waen
the first of thesz nodes transmits a message destined for the otiier, cne
can inguire av to what the rost of the net appears like, from thg:point
of view of rhe transnitting umode, In answer to this inquiry, it does not °
seen unréaconable to consider that the rest of the net offers, to the
zessage, a number I, of “equivalent” alternate paths from the fivst node
to the second; the eguivalence being a very gross sinplification of the
actwal situation, which, mevertheless, serves a useful purpese, Thus,
the systoem under comsideration reduces itself to that considered by
Erlang. Now, for given conditions of average traffic flow and total
transnitting cagaciiy between tthe e undes, the problem as to the
optimua vaiue.oi;ﬂ preceuts itself {optimum here referring to that walue
of ¥ waich ﬁiﬁiéizgs the total time spent in the tranzmitting node, i.e.,
cime spent waiting for o free transxzicsion channel plué time- spent in
transmitting the message). Thus, as shown in Figure 1, ¢he system cor-
gists of U chonnels, each of cepacity C/Y bits per second, with Folsson
arvivels of mean vate A, avd with £he megsage lengiths diseribured

arpenenticlly with mean lengih 1fu bits,

© C/Y bits/sec

O C/H bits/sec

o3
nu bits/cec
mean twaffic

(wext nmessage chooses cne from the

MG/ bits/see
avallable eboannels at random. )

Figure 1: MNechannol node consildered in Theorem 1,
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As is well knewn, the solution for ?n(defir*ed as the pr:)i";:ability of
finding n messages in the system in the Ste_d&;r' staze) is, for MuG < i,

("

2,2 /! S . a g w

S o
pap“n".!m: e . ny W
.

where p = AuC is defined as the weilization fé,ééor,-""i‘-bs:e that this is
the same soclution found by Erlong, Trom these steady state 'p::obaail-
itles, we can easily find B{t) » Wnich is the espected value of the time

- spent in the systenm, as

i
Ly

Efc) = Wuc +i’ C2® /7 uc-p) R {:
where o

B 1 = ()" / (1ot
‘and :

P IE (e a4 mm“zwééﬁ:&‘l N e
o nE® 0 - oL o '

He are nov ready to state
TIBGREM 1 T

The veolue of H {‘fc:ich aialmizes E(t), _foi* all 0 € »p <1is

¥e=i,

Let ws look at the empression for E(t) a little closer., UNote
thet the gusntity ¥/pC is merely the 'avéz'*_grga time spent in transmitting
the message over the chamnel, once a chanuel is .éﬁr_&i-lablao Aleo,

P(pM) is the probability that a messege is forced to amter Che queta,

Mow, frem the independence of he messages, one :-:oald'-e::pect: E(t) to be
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E{t) = average time soent in chhnve1 + averzge time szent in gueue.
Bquation (5) is of the form

E{t) = average time spent in chamel 4 {prcbability of entering

the queue)d

vhere T = 1/(1-pipC.

#

The physicel Intevpretation of the qsantity is that it is the average
time spent In the queue, given that a message will join the cueve, The

interesting thing”here_is that the quantity T is independent of 1,

Let us now vecall one of the basic assumptions of Jackson's
theorem, namely, th&é'nﬁOﬂ_CQﬂpleting Eefﬁiéé*iﬁ'dep&ft&eut m, a
customer goes :mmedxately o depav tment k with nvacabllity LI i£,
now, we consider a communication netvork of nodes and links {channels) ,
it is wot 2t all obvious howr we can raute-me*éages-in-t&e net so as to
satisfy this assumption. That is, how cen we aeaign a communication
network so that an arbitrary nessage enLarhﬂg node @ will, vith
probauzlzcy %0 be trensnitted over that chamnel which links node m to
node &, €Clecriy, one way to achicve ta¢u is to aseizn each message, &9
it antars.ncde @, to the channel inking nodes m and Ik, with probabil-
ity @y Hevever, with such @ acheme, thare would occur gifvations in
which there were messeges in the node wuiniﬁﬂ on a queue at the same time
that some of the channmels leading out of the node ware idlc. Ii seems
ratsnnable, in sore caszes at leasﬁ,'to prchibit-sucﬁ a condition.
Therafa&e, ¥ ictimg the existence oi idle cnanneiu if there aTe any

vaiting néssages, ve arvive at the &o‘lawino

THEOREM 2:

Given o two channel service faczlz,y of tata) capac*ty c,

Polseon arvivals with mean rate by, message leugths di&tt;bua & euponen-

tially wich mean length 1/n, and the restriction ¢hat no channel be idie
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if a message is waitiag in the queue, then, for an avbitrarily chosen
number, 0 g "y € 1 it is pot possible to find d:'-ﬁueue discinline and an
asgigoment of the two chanrel capacitiesz {the sum being C) such that

Pr (entering message is transmitted on the first channel) = %y

for all 0 ¢ p ¢ 1
where - p = A/uC

Thus, this theorem shous that one camnot, in general, mae an arbigrary
assignment of the proebability of beingltransmitted QVET A particulér
channel which remains constant fer all p, Fowever, in the proef of this
theswem, it is shown that it is peaaibie to find a queue discipline and
a channel capacity assigament such tbat the deviation of this probabil-
ity #y is rvather small ever the eﬁsire'range 0 g’p < 1,

It is alse ef interest te note that in the proof of Thecrem 2,
it is shown that the vaviation of m, is zero over 0 g p < 1 for
%, = 0, 1/2, 3, In fact eiis leads o the Following

COROLIARY: Tor the same conditions 33 $hga?em 2;'except allowing
W channels, and for %z s ﬁz Mmoo W Wy = /9, then it is possible to

find a2 queuing discipline and a channel capacity assigement sueh that

R '
Pr {eoterving wessage is transwitted over the 1t1 channel) =
1B for all 0gp< |

In pr&ving Theorems 4 and 3, as well as in some other invesii-
gations which have been started by the auther, the solution o a ser of
non-linear equations was found %o be necesgary. As is gomerimes poe-
sible with such equations, the proper transformaticn of varisbles per-

wmiteed the rveduction of these syuations to a linear eystem. This

cransfowmation turned out o involve that fundemental quantity p, and

thus led o




THEOREM 3;

Coansider an 11 cﬁanuel service facili&y of tatal capacity C,
Poisson avrivals with mean rate \, message lenoths distrxbnted exponan-ﬁ

tially with mean lengta 1/p, and an atbitraty quede discipliueg.;
the utilization factor

p = AuC

Then _ pe1 -Z (Cn!C}Pn | {6)

where E; = EBxpected value of tha unuSed'cagacity‘given n lines in use

and ?n_-.?r.(finding 0 messages in the system in the steady state)

ptov{déd\ b stem veaches a steady state,

Votice that, in Theeren 3, 2ll information wegarding the queue
digcipline is contained and sﬁmmafized'in the quantity Eva This theorem
corresponds very nicely with cne's intuition, as nay be seen by rewriting
it ag

p = 1 - E (unused normalized capacity)

wvhere the normalizatien is with respeet to the total capacity C. It is

clear that this last equation way, in turn be written as
p * E (used normalized capaciay)-:'

vaich says that
AMu = E (used capacity) - . _ {r)

Now, gince the average number of messages entering per sccend is A and
their average length is 1/u bite per message, the guantity A/p is clearly
the average number of bits per second entering the facility. [Recall thac

the condition for the existance of a steady state for this system i

-

NapC < 1
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Thus, if we have a steady state solutien, ve are éuaranteed that
Mu < C (which says that the facility can handle the incoming traffic)
and go the expected value of the capacity used by this input rate will
merely be Afu; this is precisely what equation (7) states.

In even the simplest conceivable communicationb natwvork, it seems
reasonable to require that when a nessage raaches the node to which it is
addressed, it should leave the system i.e,, it 1s &eliverado Hawaver, in
the assumptions considered by Jackson, there is no final address associ-
ated vith each "message" and so, the correspendence between the problem
considered by Jackson, and'that of interest to this thesis is net as
close as cne might hope.

Therefore, let us consider a communication network with M 4 1
nodea, for which the entering messages nave associated with them a final
deatination-(&ﬁ@ressb. fuee a nessage reaches its address, it is dropped
from the syétémhimhediutely. Thus, we ave altering the model considered
by Jachamn cnly slightly; and in order to keep the rest of the system
similar to his, we will comsider a completely connected net, with alll
=, = 1/¥ (i.e., upon entering a node, a message will be transmitted over
2 parvticular chamnel with probability 1/8, unless the node which it just
entered is its final destination, in which case the messaze leaves the
system with probability-one)e Note that the corollary te Theorem 2
allows us o define such ®; o For such a system, it turns out that
Jackscn's results still apoly with some alight midlfi*ations as stated
in

THECREM 43

Consider tha ccmpletaiy connected'm 4» ncde 3ysaém described
above, Let each transmission channel leaving node m have caoucity C M.
Let the incoming messages enteving nocde m frem external sources be
Poigson at rate A and let the message lengkhs be enpanentiaily dis-

tributed with m2aa length 1/p. Further, let ¢ e the Pr (message enter-

i

ing node m  from its exnternal source has, for a final addvess, node j).

Also define ?Q ) as the prohahziaLy of finding n messagss in node m in

the steady stateq -
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Then

& _
2, ¢ Fm;ucmmn;n; (am 0, 1, aoe, )
{=) '
AR {3}
m S .
2o ¢ [T ue »% my CREN LR R
—
whare _
=5 r a, /v |
rr,n._ m iZm 1 %l e : (93
and Qim w Pr {apbitrary message in node i does not have nede m for
a final address)
provided [: < ucm for allm=1, 2, ecap Mo

This thecorvem is alwost identical to Jackson's theorem, as one
night empect, Zio%g.ge chat herve, the appropriate _d_gfinition for the
atilization factey/node m is B Enj;gcm., The definition of E_l ags given
in Eqne (9) can te shown to agzee with the definition for the average
arrival rate of messages at node m {analegous to Jacksen's definition in
Egn, (1) ), The evaluation of @, involves solving a set of simultaneous
eguations, as does the evaluation of rm. By way cf illustration, the

selution for rl and G,, in 2 three nede net follows:

2 o
Fl BRI TR R Y

¢ 1¥13

1o = 2N, e 100 [

As olveady mentioned, P, Burke [17] has shewn ¢hat in a waiting

system with U servers, with Polsson arvivals (mean rate M) and with

exponential helding timzs (rean holding time for eseh sevver = 1/u), the
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traffic departing from the system is Poisson with mean rate A, previding
the steady state prevails (i.e., provided p = N/ul is less than 1), 1In
fact, it is cn thic basis that Jacksea is able to say that his sysetem con~
sists of indeperndent elementaéy systems; that is, Durke's theorem states
that euponential waiting systems (or.dgpartments or nodes, as the problem
may be defined) always transforn Peisson input traffic into Poisson out-
put traffic {with the same weun rates) end thus the départing'traffic is
not distinguishable from the input traffic, An identical sitwaticn exists
for the system considered in Theoram &, and is stated formally in

THECREM 53

For the system considered in Theorem &, all tra€fic flowing
within the network is Poieson in nature, and, in particuler, the traffic
transmitted from rode m to any ofher vede in the system in Peisson with

‘wean cate rlgm,

Y¥any ef the theorvems presented here ave fairly specialized o
particular conditicns on the network topalogy and en the routing disci-
pline. It is anticipated that o nuwber of them can be axtended to less
rastrictive networks, and such an effort is now teing undertaken by the

author, since this investigetion fits very well with the genzral ainms of

the thesis regearch,




